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Electronic device scaling is ultimately limited by atomic dimensions. The simulation of
electronic structure and electron transport on these length scales must be fundamentally
quantum mechanical. This leads to computational models that account for fundamental
physical interactions using an atomistic basis and tax even the largest available super-
computer when simulating measurable devices. The prototype development of a software
tool that enables this class of simulation is presented. Realistically sized structures contain
one million to tens of millions of atoms that need to be represented with an appropriate
basis. The resulting sparse complex Hamiltonian matrix is of the order to tens of mil-
lions. A custom matrix–vector multiplication algorithm that is coupled to a Lanczos and/or
Rayleigh–Ritz eigenvalue solver has been developed and ported to a Beowulf cluster as
well as an Origin 2000. First benchmarking results of these algorithms as well as the first
results of quantum dot simulations are reported.

c© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The goal of reducing payload in future space missions while increasing mission capability demands minia-
turization of measurement, analytical, and communication systems. The ultimate scaling limit of individ-
ual semiconductor devices are atomic dimensions. The enabling technology for miniaturization of space
mission electronics has been the miniaturization of semiconductor devices (Fig.1A adopted from the SIA
Roadmap [1]) of the past 40 years. The development has surpassed every expectation and overcome (so far)
every predicted technological obstacle. It has become evident that not technology but theatomic dimensions
of the underlying crystalline lattice and the countableelectron number(Fig. 1B) ultimately limit [2] this
scaling trend. A variety of novel nano-scaled detector [3] and computation [4] schemes based on quantum
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Fig. 1.A, Minimum 2D feature size as projected on the SIA roadmap [1]. Layer thickness of 0.01µm in the next generation devices are
not captured in this graph. B, Number of electrons under a a CMOS SRAM gate [2]. Dopant fluctuation and particle noise fluctuations
may make reliable circuit design impossible since each device may vary from the next significantly.

dots have been proposed and/or demonstrated. The work presented here is aimed at providing a simulation
tool that enables the fundamental modeling of electron devices on the length scales of a few nanometers. The
problem size and the choice of atomistic basis sets results in numerical representations that require the usage
of supercomputers [5].

Simulation for device design and characterization.Physics-based device simulation has penetrated the
mainstream semiconductor industry device design and characterization process [6] in the last 1 or 2 years.
This penetration can be attributed to the increased experimental costs of nano-scale layer and feature char-
acterizations and the introduction of new materials. The modeling–fabrication–characterization triangle that
has existed in circuit design for the past decade has now established itself for the underlying semiconductor
device design as well. This coupled process will enable the device design for the next device generations if
the physics-based simulation tools can deliver the needed accuracy. As the electronic device sizes shrink fur-
ther towards the tens of nanometer size scale (deca-nano) in all three dimensions, new physical phenomena
will emerge, that previously could be safely ignored. These phenomena are based on the quantum mechanical
nature of electrons which is typically ignored by or patched into existing commercial device simulators. Such
an approach will probably suffice for the next two device generations with empirical model calibration and
limited scaling projection capability. In order to correctly model physically observed effects such as electron
tunneling, state quantization and charge quantization more sophisticated models need to be developed and
incorporated into device simulators that can handle realistically sized systems.

Our modeling agenda. Following our 1D nanoelectronic modeling work [7, 8] (NEMO 1-D) we are
developing an atomistic-based, nanoelectronic modeling tool (NEMO 3-D). The following section discusses
some of the system size issues ad quantum mechanical modeling capabilities that need to be included into
such a simulator.

2. Quantum dot applications and modeling requirements

Quantum devices are not shown on the SIA roadmap for lithography because it focuses on pure silicon
device scaling. In particular Fig.1A only shows the lateral feature size, while layer thicknesses are already
on the order of 0.01µm. Various quantum dot implementations in different material systems as well as
silicon have been examined since the late 1980s (Fig.1B), and several designs have shown room temperature
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operation. Pyramidal self-assembled quantum dot arrays in particular are promising candidates to be used in
quantum well lasers and detectors [3] within a few years.

What is a quantum dot?A quantum dot (QD) can be described as a solid state structure in which a
(small) number of electrons are isolated from the surrounding environment. This is achieved by ‘placing’ an
electrical insulator around a (semi-)conductor. If the central region is small and clean enough effects due to
state and charge quantization can be measured macroscopically. QDs can therefore be viewed asartificial
atoms. They represent the ultimate limit of scaled solid state devices. The large parameter space of material
systems, shapes, and doping profiles allows for a detailed engineering of the electrical and optical properties
of QDs. In particular, the fine tuning of optical transition energies applies to JPL’s immediate interest in far
infrared detectors and emitters.

Near term quantum dot applications.Currently several research groups are incorporating self-assembled
InAs QDs into AlGaAs quantum wells in optical detector and laser structures [3]. The reduced degree of free-
dom reduces the scattering of the confined electrons and therefore increases the state lifetimes. This increase
promises better device performances such as reduced threshold currents, decreased linewidths, reduced dark
currents [9] and higher operating temperatures. These are systems which apply to JPL’s immediate interest
in far infrared detectors and emitters.

Size and atom number estimates of realistic systems.The modeling of an individual self-assembled InAs
QD of 30 nm diameter and 5 nm height embedded in GaAs of buffer width 5 nm roughly requires a simulation
domain of 40× 40 × 15 nm3 containing approximately 1 million atoms. A horizontal array of four such
dots separated by 20 nm roughly requires a simulation domain of 90× 90× 15 nm3 which corresponds to
5.2 million atoms. A 70×70×70 nm3 cube of silicon which might be needed to simulate ultra-scaled CMOS
device contains about 15 million atoms. There are about 43 atoms in 1 nm3 as a rule of thumb.

3. Basis representation

Researchers have explored a variety of different approaches to represent matter in a nano-scaled system.
All these approaches fall into two major categories: atomistic and nonatomistic. The nonatomistic approaches
do not attempt to model each individual atom in the structure, but introduce a variety of different approx-
imations that are usually based on a continuous, jellium-type description of matter. Such approaches typ-
ically deal on the lowest level with effective masses and band edges. The populark · p approach belongs
in this category. These approaches do not contain any crystalline information and are fundamentally not
well suited for the atomistic representation of nano-scale features such as interfaces and disorder. Atomistic
approaches attempt to include the electronic wavefunction of each atom in some approximation. The crit-
ical question is what basis set to use for the representation of the electronic wavefunction. There are two
schools of thought: (1) plane waves [5], and (2) local orbitals [10]. A list of pros and cons for each method
could be presented; instead we just state here that we consider both methods complementary to each other
and that we choose the local orbital basis (tight-binding) approximation for its ability to model finite struc-
tures (not infinitely extended) and for its past success [7, 8] in quantum mechanical modeling of electron
transport.

The basic idea of the tight-binding method is that one selects a basis consisting of atomic orbitals (such
as s, p, and d) to create a single electron Hamiltonian that represents the bulk electronic properties of the
material. The interactions between the different orbitals within an atom and between nearest-neighbor atoms
are treated as empirical fitting parameters. A variety of parameterizations of nearest-neighbor and second-
nearest-neighbor tight binding models have been published including different orbital configurations [11–16].
Our simulator typically uses an sp3s* or sp3d5s* model that consists of five or 10 spin degenerate basis
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states, respectively. Each atom is therefore represented by a 10× 10 or 20× 20 matrix. We have limited
ourselves to nearest-neighbor interactions to enable a simpler interaction representation in the presence of
strain. This nearest-neighbor model restricts the number of nonzeros per row to a small value independent
of device size and yields a sparse, block banded Hamiltonian withO(n) nonzeros, wheren is the number
of atoms. The strain that arises near interfaces of materials with different lattice constants yields a different,
position-dependent coupling between each neighboring pairs of atoms. For the case of a zincblende lattice,
each atom has four neighbors. Therefore, the storage requirement for 1 million atoms can be estimated as
106 atoms× 5 diagonals× (20× 20 basis) × 16 bytes/2( f or Hermitici ty) = 16 GB. Algorithms that
use more of the symmetry of the Hamiltonian are considered for future development. Currently we have the
option to store the Hamiltonian or to recompute it on the fly.

QDs are characterized by confinement in all three spatial dimensions, so that the Hamiltonian no longer
commutes withany of the (discrete) translation operators. The wavevector is hencenot a conserved quan-
tity in anydimension. The most appropriate basis for representing such a highly confined wavefunction is,
therefore, one consisting of atomic-like orbitals centered on each atom of the crystal. Following Slater and
Koster [18], we take the atomic-like orbitals to be orthonormal. We consider a crystal whose Bravais lattice
points are given by

Rn1n2n3 = n1a1 + n1a2 + n1a3 (1)

where theai are primitive direct-lattice translation vectors and theni are integers. If there is more than
one atom per cell (as is the case with, for example, GaAs or Si) we index the atoms within a cell byµ

and the location of theµth atom within the cell located at 1 is given byRn1n2n3 + vµ wherevµ is the
displacement relative to the cell origin. We normalize the wavefunction over a volume consisting ofNi cells
in theai (i = 1, 2, 3) direction and write the state as a general expansion in terms of localized atomic-like
orbitals: ∣∣9〉 =

1
√

N1N2N3

N1∑
n1=1

N2∑
n2=1

N3∑
n3=1

∑
α

∑
µ

C(αµ)
n1n2n3

∣∣α; µ; Rn1n2n3 + vµ〉. (2)

In eqn (2) α indexes the atomic-like orbitals centered on theµ atoms within each cell(n1n2n3). The
Schrödinger equation thus appears as a system of simultaneous equations given by:

〈α; µ; Rn1n2nc + vµ|(Ĥ− E1̂)|9〉 = 0. (3)

In eqn (3) we express the matrix elements between localized orbitals as tight-binding parameters, in our case
limiting the interactions to the nearest neighbor.

4. Numerical details

4.1. Parallel implementation of sparse matrix–vector product

The goal of the simulation is to solve the eigenvalue problem for low lying electron and hole states near
the band edge. Two algorithms, a Rayleigh–Ritz minimization algorithm and a Lanczos method, have been
parallelized to solve this problem. At the heart of each is a sparse matrix-vector multiplication. For imple-
mentation on a distributed memory platform, data must be partitioned across processors so as to facilitate
this fundamental operation. For good load balance the device is partitioned into approximately equally sized
sets of atoms which are mapped to individual processors. Because only nearest-neighbor interactions are
modeled, a naive partition of the device by parallel slices creates a mapping such that any atom must com-
municate with neighbors that are at most one processor away. This scheme, shown in Fig.2, lends itself to a
1D chain network topology and results in a block-tridiagonal Hamiltonian, where each block corresponds to a
pair of processors, and each processor holds the column of blocks associated with its atoms. Communication
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Fig. 2.The device is decomposed into slabs (layers of atoms) which are directly mapped to individual processors.

costs, roughly proportional to the boundary separating these sets, scales only with surface area(O(n2/3))

rather than with volume(O(n)), wheren is the number of atoms. In a matrix–vector multiplication, both the
sparse Hamiltonian and the dense vector are partitioned among processors in an intuitive way; each proces-
sor p holds unique copies of both the nonzero matrix elements of the sparse Hamiltonian associated with
the orbitals of the atoms mapped to processorp and also the components of the dense vector associated
with atomic orbitals mapped top. The matrix–vector multiplication is performed in a columnwise fashion as
shown in Fig.3. That is, processorj computes

yi, j = Hi, j x j (i = j, j ± 1) (4)

where Hi, j is the block of Hamiltonian associated with nodesi and j , and x j are the components ofx
stored locally on nodej . The results of the matrix–vector multiplication of the off-diagonal blocks(i 6= j )
with the local portion of the dense vector are sent via MPI calls to neighboring processors in two steps.
First, all but the rightmost processor send data to the right (and receive data from the right, possibly in full
duplexing depending on the actual MPI implementation), subsequently followed by communication to the
left neighbors. In addition, not all rows of the off-diagonal blocks are in general nonzero, although the sparse
structure of these blocks depends on the particular crystal structure in question. In practice, however, a suffi-
cient fraction of zero rows exists that compressing the matrix–vector multiplication by removing structurally
guaranteed zeros is worthwhile despite the additional level of data pointer indirection required to keep track
of the nonzero structure.

4.2. Performance

In this section, we discuss the performance of NEMO 3-D using the parallelized Lanczos algorithm on
two platforms, a Beowulf commodity cluster of Pentium III’s and a shared memory SGI Origin 2000. Fig-
ure4A displays the performance of 30 iterations of the Lanczos solver on a Beowulf system consisting of 32
nodes with two 933 MHz Pentium III CPUs and 1 GB of RAM per node. Different processors communicate
using a nonshared memory MPI implementation and over a slow 100 base-T ethernet connection. Curves
corresponding to five different problem sizes are shown. Dashed curves indicating a linear (ideal) scaling are
also shown for reference. The two largest problems require enough memory that they require more than one
processor to avoid swapping. The efficiency, the ratio of speedup to ideal speedup, as a function of number of
processors decreases with increasing network size. This decrease corresponds to a fraction of unparallelized
code of approximately 1.6%. However, Fig.4B also shows that for the regime of interest the efficiency is
independent of problem size. This result suggests that while communication bandwidth is not a limiting
factor for this problem, there may be some inherent load imbalance in the computation. This issue is under
continued investigation.
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Fig. 4. A, Execution time of 30 Lanczos iterations on a 933 MHz Pentium III Beowulf cluster (solid line with symbols). The dashed
lines illustrate ideal scaling. The nearest-neighbor CPU communication limits the 0, 25, 0.5, 1, and 2 million atom simulations to 32,
40, 51, and 63 CPUs, respectively. B, Efficiency as defined as the ratio of actual speed-up to ideal speed-up.

Figure5 compares a 933 MHz Pentium III dual CPU Beowulf to a 450 MHz single CPU Pentium III
Beowulf. If execution times are scaled by CPU clock frequency, the performances of the two systems are
indistinguishable. This result reinforces our finding that for the problem sizes of interest, our solver is limited
by CPU speed rather than by communication bandwidth.

NEMO 3-D has the option of reusing the Hamiltonian for more than one iteration or computing the matrix
vector multiplications on the fly without explicitly storing the Hamiltonian. Clearly, storing the Hamiltonian
for later re-use is preferable, but is not possible for sufficiently large problems. Figure6 compares the perfor-
mance of the 933 MHz cluster with a 128 CPU 300 MHz R12k SGI Origin 2000 with 512 MB of memory
per processor. As before, dashed curves indicate ideal performance. Figure6A simply shows that the SGI
Origin 2000 scales similarly to the Beowulf cluster. Figure6B, interestingly, shows that the benefit of storing
the Hamiltonian is much greater for the Origin 2000 than it is for the Beowulf cluster. Indeed, while execu-
tion time on the Beowulf system is reduced only by a factor of 1.3, it is reduced roughly by a factor of 4 on
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the SGI Origin 2000. The reason for this discrepancy is not completely clear, but is likely attributable to a
difference in cache size and memory access speed.

5. Simulation of Alloyed Quantum Dots

Since we represent each individual atom in the QD system explicitly we can demonstrate this capability by
simulating an In0.6Ga0.4As alloyed QD system [19] in a GaAs matrix. The dome shaped QD has a diameter
of 30 nm and a height of 5 nm. A 5 nm GaAs buffer surrounded a QD in the simulation. Since the In and Ga
ions inside the alloyed dot are randomly distributed, different alloy configurations exist and optical transition
energies from one dot to the next may vary, even if the size of the dot is assumed to be fixed. We therefore
try to answer the question: What is the minimal optical linewidth that can be expected for such an alloyed
dot neglecting any experimental size variations? A side view of such an alloyed QD which is half the size of
the system considered here without the surrounding GaAs is shown in Fig.7A.
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Fig. 7.A, Lens shaped In0.6Ga0.4As QD visualized the molecular viewer Rasmol. The QD size is scaled down to include less than 10 000
atoms for visualization purposes. B, Lowest conduction and highest valence quantized states that are inhomogeneously broadened by
alloy disorder.

In simulations of 490 random alloy configurations [17] we have obtained the single particle electron and
hole ground state energies and the optical transition energy from their difference. The mechanical strain is
minimized using a valence force field method [20, 21] which considers contributions to the total strain energy
due to bond length changes as well as bond angle modification. The mechanical strain field is recomputed
for each alloy configuration. For these particular simulations we used the sp3s* basis set where the matrix
elements scale with respect to the equilibrium position with the ideal [14] exponent 2.

The simulation of 490 different alloyed dots shows [22] a mean optical transition energy of 1.04 eV and a
standard deviation, or associated linewidth of 4.5 meV compared to experimentally reported [19] transition
energy of 1.09 eV and a linewidth of 34.6 meV. The experimental data does of course include QD size
variations as well. We plan to simulate larger samples that do include QD size variations in the future. The
major result of this simulation is the observation that there will be a significant optical linewidth variation
due to alloy disorder alone, even if all the QDs were perfectly identical in size.
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